
A3 Architecture Overviews 

Focusing architectural knowledge to support 
evolution of complex systems*1

P. Daniel Borches   G. Maarten Bonnema 
  

Laboratory of Design, Production and Management, 
Department of Engineering Technology, University of Twente 

P.O.Box 217, 7500 AE  Enschede 
The Netherlands 

p.d.borches@ctw.utwente.nl       g.m.bonnema@utwente.nl 
 

 
Copyright © 2010 by P. Daniel Borches.  Published and used by INCOSE with permission. 

Abstract. Creating complex systems from scratch is time consuming and costly, 
therefore a good development strategy often chosen by companies is to evolve existing 
systems. The understanding that a company has about the impact change has on the 
system determines its ability to cope with system evolution. Reuse of knowledge and 
experience becomes therefore, essential. Complex systems are usually the result of a 
multidisciplinary team, which means that an effective way to capture, organize and 
present this knowledge, in a fashion that can be used by different disciplines and 
departments is crucial. Typically, some of this knowledge is present in the form of text 
documents. However, much of that knowledge is usually lost or hidden, especially in 
long-lived systems. This leads to unexpected problems that could be prevented if the 
company had reused the knowledge it already has. 

In this paper system evolution barriers are discussed, and a method to cope with them is 
provided. Some companies such as Toyota have already identified the advantages of 
using an A3 approach2

Introduction 

 to capture and share knowledge. We share this idea and take it 
several steps further. A method, based on the creation of ‘A3 Architecture Overviews’ 
is proposed to capture and share architectural knowledge. The method is the result of 
the work carried at Philips Healthcare MRI Group. We show that the proposed method 
to capture architectural knowledge provides an effective framework to support decision 
making when evolving complex systems.  

System requirements change over time; consequently, companies need to systematically 
evolve their products to cope with those changes. Since developing a system from 
scratch is time consuming and costly, new systems are often created by evolving an 
existing system (Suk suh et al. 2008; Borches and Bonnema 2009). However, the effort 
and resources required to adapt complex systems to changing requirements can be 
significant; if a change of requirements occurs, the effect can ripple through the entire 
system due to dependencies, known and hidden, in the system. 

Hence, a company’s ability to undertake and manage system evolution, can be 
influenced greatly by their understanding and knowledge of the impact that a change 

                                                 
*This work has been carried out as a part of the DARWIN project at Philips Healthcare under the 
responsibility of the Embedded Systems Institute. This project is partially supported by the Dutch 
Ministry of Economics Affairs under the BSIK program. 
2 A3 is an international paper size standard (American metric equivalent of 11” x 17”). 
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has on the overall design and implementation (Isaac and McConaughy 1994; Steiner 
1998). Companies already have a large amount of knowledge about the domain, 
partially implicit -mainly in the expert’s minds- and partially explicit -in the form of 
documents and repositories-. Yet, few companies know how to capture knowledge 
effectively, and fewer companies know how to reuse that knowledge (Domb and 
Radeka 2009). Many people have difficulties sharing knowledge across organizational 
boundaries, and sometimes even with persons in the same office but different 
backgrounds. Decision making therefore fails to take advantage of the knowledge the 
company already has.  

To provide guidance to architect new generations or variations of the system 
architectural knowledge is needed. However, this knowledge is usually not structured 
nor captured effectively. An effective way to capture this architectural knowledge, in a 
fashion that can be understood and accepted by all stakeholders is then required. The 
challenge is how to reduce the large amount of information spread within the company 
to manageable proportions, and how to present it in an easy to use way without losing 
essential details in the process. In the following sections the method to cope with system 
evolution by capturing this architectural knowledge, and observations from its 
application in a real industrial case -a Magnetic Resonance Imaging (MRI) system- are 
presented. 

Industrial case: Magnetic Resonance Imaging (MRI) scanner 
Magnetic resonance imaging (MRI) is an medical imaging modality that detects small 
changes in the magnetism of the atom’s nucleus. An MRI system requires a 
multidisciplinary design team with competences in areas such as mechanics, electronics, 
physics, software and clinical science. The MRI process is in itself very difficult and 
involves many parameters and several domains (Weishaupt, Köchli, and Marincek 
2006). All the disciplines have to work together on different aspects of the design. 
However, people are usually specialized in a single discipline, and each discipline uses 
its own vocabulary. This adds up to the complexity of the design process in a large 
company such as Philips. To illustrate this complexity, some indicative numbers of 
Philips Healthcare MRI products and its development are provided in Table 1. All this 
is excluding research, marketing and so on.  

 

Parameter Value 
Developers ~250 

Disciplines Physics, Mechanics, Electronics, 
Software, Medical applications etc. 

Development sites 3 

Subsidiary sites All around the world 

Technologies ~50 

Lines of SW code 7*106  (~10 different languages)  

Table 1: Parameters of the MRI system development. 
As shown in Figure 1, since Philips released the first commercial scanner back in the 
80’s,  despite the challenges, Philips has successfully evolved it several times leading to 
the present system. The main architecture of the system and the design principles behind 
it have remained almost unchanged compared to the original system, while 
implementations and technologies used have changed completely in those 30 years.  



If “the test of a good architecture is that it will last” (Robert Pinrad, 1993), we can 
argue that the Philips MRI architecture is a good one. The complexity of the system 
however, has increased rapidly. The need to reuse existing knowledge to provide 
guidance and prevent problems is more relevant than ever. Taking all this into account, 
we believe the MRI system is an ideal case to study the evolvability of complex 
systems. 

 
Figure 1 Philips MRI Evolution (intermediate releases not included) 

To cope with evolution of complex systems such as an MRI, we need a way to 
effectively capture and share architectural knowledge. For that, we propose an method 
to collect, abstract and present architectural knowledge to support decision making 
during the evolution of complex systems. The method is based on the creation of A3 
Architecture Overviews. As will be discussed in the following chapters, the main goal 
of an A3 architecture overview is to have a manageable representation of the 
architectural knowledge related to a system aspect, enabling stakeholders to reason and 
communicate the consequences of system changes.  

System Evolution and Architecture Descriptions 
In technical sciences such as computer science, significant research has been carried out 
exploring the relation between design and evolution (MacCormack, Rusnak, and 
Baldwin 2008). This is due to the fact that software projects rarely start from scratch but 
rather prior versions are used as a platform. In the systems field, many years have 
passed since the first paper regarding ‘system evolvability’ was published (Simon 
1962). System evolvability can be defined as “system’s ability to adapt to changing 
requirements and different environments throughout its lifespan in a time-efficient and 
cost-efficient way” (Borches and Bonnema 2008). The importance of adopting 
evolvability has been discussed by several authors (Isaac and McConaughy 1994; 
Steiner 1998; Rowe and Leaney 1997; Christian III and Olds 2005; Ring and Fricke 
1998) and its role in the system architecture has been described in (Isaac and 
McConaughy 1994; Steiner 1998). Since then some work has been done (Isaac and 
McConaughy 1994; Rowe and Leaney 1997, 1998; Christian III 2004; Christian III and 
Olds 2005), yet those approaches are usually theoretical and hard to apply in industry. 
In conclusion, although some attempts were made in the past, no satisfactory way to 
deal with system evolution exists and it is usually delegated to the architect’s intuition. 

As stated in (Rechtin and Maier 2000), “if you do not understand the existing system, 
you can’t be sure you’re re-architecting a better one”, the first step towards evolving a 
system is understanding the existing system. (Churchman 1968) stated that “how can 
we design improvement in large systems without understanding the whole system, and if 
the answer is that we cannot, how is it possible to understand the whole system?”. It is 
to say, to understand the existing system as a whole is essential to effectively evolve it. 



To better understand the system we need to collect architectural knowledge of all 
relevant aspects of the system. Architectural knowledge is the kind of knowledge that 
provides guidance to architect new generations or variations of the system. 

Then, a challenge to cope with system evolution then is how to effectively capture this 
architectural knowledge, and how to share it in a fashion that can be used by a broad set 
of stakeholders. Companies have a large amount of knowledge about the domain -both 
technical and contextual-, however that knowledge is only partially explicit (e.g. in the 
form of documents) while a majority of it is implicit (e.g. in expert’s minds). To support 
correct decision making, companies need to take advantage of the knowledge they 
already have. By using this knowledge to understand and assess the consequences of 
changes, design effort can be directed towards avoiding undesired impacts and guiding 
the design of the system to one that enables easy evolution.  

To better understand challenges to evolution in an industrial environment, and therefore 
be able later to assess the improvement or our method, we conducted a survey to Philips 
Healthcare employees. The target of this questionnaire was the MRI development 
organization (~250 employees), where 35 people (~1/7 of the population) filled in a 
questionnaire with ~50 questions. The questionnaire addressed the main development 
challenges and the effectiveness of the current way to capture architectural knowledge. 
For the analysis, a classification was made according to job title (HW/SW, architect, 
designer, engineer, domain expert, manager) and MRI experience. This questionnaire 
will not be discussed in detail in this paper, but the findings will be used to support 
some of the statements. 

System Evolution Barriers 
Barriers to evolution and challenges to design and develop complex systems can be 
found in literature (Ring and Fricke 1998), and they have to do mostly with handling 
complexity. Evolution pose a great challenge to companies, yet it is taken as a fact of 
live that is costly to change and therefore it doesn’t deserve too much attention from 
management. 

From the questionnaire it was found that main evolution barriers when dealing with new 
developments are; managing system complexity, communication across disciplines 
and departments, knowledge sharing, and finding the necessary system information. 
Those barriers, and specially the lack of knowledge sharing, were identified as the root 
cause of many development problems and bad decisions.  

The reaction to the survey findings was, as stated by Philips’ management, “you have 
not discovered anything new; however you have shown that the magnitude of the issue 
is bigger than we thought, and consequently deserves more attention”. After some 
discussions with representatives from other companies about those findings, we believe 
this is a common situation in most companies.  

Architecture Descriptions 
Architecture descriptions aim to ease those evolution barriers. IEEE 1471-2000 is an 
example of an architecture description standard. It provides with a very generic 
information model to guide the creation of architecture descriptions. Core idea behind it 
is that architecture description should consist on models. However, text documents are 
usually the way to document architectures and related knowledge. 



Why should companies pay more attention to the design and representation of 
architectures? As supported by many authors, a good architecture, well documented 
and accepted within an organization, has many benefits: Faster time to market (TTM), 
easier to add new features, smaller crew, less mutual dependency between projects, 
more satisfied employees (they know more precisely which part of the system they are 
responsible for and how their work fits into the whole), less dependencies between new 
system releases, smaller and clearer development organization, more specific and 
accurate answers to questions of the market department, fewer problem reports (thus a 
larger satisfaction of our customers), lower service costs, etc. If a good architecture is 
not well documented, it can be rendered ineffective and lose those benefits. 

For an existing system, this architecture description and design (should) already exist. 
However, in most companies, complex systems are typically poorly documented. The 
main architecture knowledge resides in the expert's minds, and only part of that 
knowledge is documented. Some key knowledge may be lost, especially in long-lived 
systems, due to experts leaving the company, design decisions and rationale not 
documented and so on. This means that usually the system architecture representation 
has to be, largely at least, reconstructed. Doing this is called reverse architecting. 

Reverse Architecting 
As stated in (Krikhaar 1997); reverse architecting is a flavor of reverse engineering that 
concerns all activities for making existing architectures explicit, and the main goal of 
reverse engineering is to increase comprehensibility of the system for maintenance and 
new development. Literature regarding reverse architecting is scarce, and it is mainly 
from software engineering and building architecture fields. Complex systems however 
are usually the creation of a multidisciplinary team. Yet we believe the lessons learned 
from reverse architecting in other fields such as software engineering (Mayrhauser, 
Wang, and Li 1999) and building architecture (Galal-Edeen 2002) apply to the systems 
engineering discipline. 

 

 

 

 

 

Figure 2 Reverse Architecting as a means to recover architectural knowledge 
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Reverse Engineering is the process of analyzing a subject system to identify the 
system's components and their interrelationships, and to create representations of the 
system in another form or at a higher level of abstraction that are less implementation-
dependent. It is a process of examination, not a process of change or replication 
(Chikofsky and Cross II 1990). In (Muller 1996), it is mentioned that the reverse 
engineering of a system consists of three phases; information extraction, abstraction 
and presentation. As shown in Figure 2, to reverse architect a system the same process 
can be applied in order to create an architecture overview. This is an iterative process; 
the information extracted is abstracted and presented many times, and then new findings 
are incorporated in each iteration. Although not explicitly mentioned, after several 
iterations the architecture overview becomes stable enough (no information is added nor 
removed). Then, we can say that the architecture overview is validated when no new 
information is added and no information is removed in the process. 

Information extraction 
In complex systems the architectural body of knowledge is abundant. Part of that 
knowledge is documented and conforms the architecture description of the system. 
Documents, diagrams and system history are the most common forms of storing this 
information. Another rich source of architectural knowledge is the architects, experts 
and other employees who can be interviewed for this purpose. It should be noticed that 
recovering the complete architectural knowledge is an illusion (Borches and Bonnema 
2009), there will be always some degree of uncertainty that will be translated into the 
architecture representation. This uncertainty is reduced as new insights are discovered in 
the process. The challenge is to extract effectively relevant information from those 
sources, and not be deviated during the process. Documents and similar sources are 
used as a starting point to create the draft architecture representation, which will be used 
as a baseline for the rest of the process. It is not possible to recover all architectural 
knowledge at once, it is necessary to focus on specific system aspects at a time. The 
initial draft will evolve during the reverse architecting process, and it is used as a 
discussion tool to extract information from experts; it is much easier for an expert to 
modify a wrong representation than creating one from scratch.  

Abstraction 
Abstraction consists of grouping and filtering extracted information to obtain a 
manageable set of information3

A well known example is the ‘A3 report’, which derives its name from the paper size 
used to print such reports. An A3 report is a tool that Toyota Motor Corporation uses to 
propose solutions to problems, give status reports on ongoing projects, and report results 
of information gathering activity. Toyota uses it to systematically guide problem-solvers 
through a rigorous process, document the key outcomes of that process and propose 

. During the information extraction phase, keeping the 
essentials and removing the unnecessary information is vital. Humans can only handle a 
limited amount of information, therefore it is important to provide only the necessary 
information. An overview provides a broad and comprehensive view. In an overview, 
only relevant information is present (Bonnema and Borches 2008). The challenge is 
how to determine what information is relevant. An A3 (metric equivalent of 11” x 17”) 
can be used as a means to keep only relevant information and provide overview. 

                                                 
3 It is important to distinguish between levels of abstraction. Different parts of the life-cycle may require 
different levels of detail. 



improvements. Some companies have already identified the advantages of the A3 
thinking approach as a way to encourage focus and brevity to enhance communication 
(Sobek II and Jimmerson 2004, 2005). However so far it has been used mainly as a 
report or analysis tool at the production floor rather than an architecting method. 

The A3 paper size works well for presenting the essential elements of a system topic, 
with enough information to make a decision about it. Larger sizes contain too much 
information, and the large paper format can become cumbersome. An A3 has enough 
room for a concise chunk of knowledge and fits well within the average person’s field 
of view. Readers may focus on one part of it at a time, but they can always see the 
whole. The guiding principle behind the A3 is to include whatever information is 
needed to create a complete picture of the issue at hand, and eliminate everything else 
until only the essentials remain. 

Presentation 
It is difficult to determine what makes a good architecture representation. It is not 
without reason that there are so many architecture frameworks. What we do know is 
that a useful architecture representation has different views of the system (Zachman 
1987; Muller 2006). The most common view in any architectural representation is 
probably a block diagram consisting of physical components and their interfaces. For 
complex systems however, as supported by authors such as (Shaw 1989), other high-
level abstraction views that are independent of the components should also be included. 
From (Retching and Maier 2000) we know that “except for good and sufficient reasons, 
functional and physical structuring should match”, and from (Bass, Clements, and 
Kazman 2003) we know that “the architectural design of a system can be described 
from (at least) three perspectives: functional partitioning of its domain of interest, its 
structure, and the allocation of domain-function to that structure”. This supports the 
idea that an architectural representation needs at least a physical and a functional view.  
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Figure 3 Architecture Overview elements 

As shown in Figure 3, what architecture representations usually lack is a quantification 
view; it is to say, figures of merit of key system parameters to support the other views. 
Numbers are needed to grasp the relevance of the issue at hand. In addition, in a real 
system, many instantiations deviate from the ideal architecture, and there is always 
some design constraints or choices that are imposed to the architecture such business 
drivers, technology choices, etc. This additional information should also be included in 
the architecture representation. These views; physical, functional and quantification, 
should not be isolated from each other, mapping of elements among them is necessary. 



Once we know what to include in the architecture representation, the question that often 
arises in the mind of the architect is whether the architectural knowledge should be 
captured in a model4

Another point of discussion is whether or not formal notation (e.g. SysML or UML) 
should be used in the architecture representation. From the survey we found  that this is 
supported mostly by employees with a software background, who are more used to 
formal notations, while other disciplines prefer not to use formal notations. This is also 
corroborated by our own experiments, in which SysML models were created to model 
the same views that are part of our current architecture representation. The main issue 
with them was that most of the meetings with experts was spent discussing the notation 
itself rather than the content. Although the benefits of formal notations are widely 
recognized, for the purpose of sharing architectural knowledge where communication 
among stakeholders is a major goal, we believe they are more a barrier than a support. 
Formal notations become more useful as the process moves down into detail design, in 
which having a formal and correct notation provides many benefits. 

 or in text. Standards such as IEEE 1471-2000 encourage the use of 
models, and in our survey we found that this is also preferred by most disciplines but 
maybe Managers and Domain Experts. However, as we will discuss later, this doesn’t 
mean that we can forget about the text and provide just models; text to support the 
models is needed. We found that models that do not provide textual descriptions usually 
ended up embedded in related documents losing their utility -overview is lost-. In 
conclusion, a model view is preferred, but text is needed to support the model to prevent 
the need for a document to contain the model. 

A3 Architecture Overviews 
From the psychology field we have learnt that; “If the concepts in the mind of one 
person are very different from those in the mind of the other, there is no common model 
of the topic and no communication” (Taylor and Fiske 1975). Hence, for effective 
communication a common model that represents the system close to the concept in the 
mind of the reader is needed. The most widely-used form of communication is the 
drawing. Drawings range from rather general descriptions that give an ‘overview’ of the 
system, to the most specific that use precise details. Because all of them have to 
communicate, all drawings must be subject to agreed rules, codes and conventions. 
Learning how to read and make those drawings is an important part of education.  

  
a) A3 Textual Overview b) A3 Model Overview 

Figure 4 A3 Architecture Overview example 
                                                 
4 Model: An approximation, representation or idealization of selected aspects of the structure, behaviour, 
operation or characteristics of a real-world process, concept or system (IEEE 610.12-1990). 



We discussed in the previous section that to deal with architectures we need different 
views of the system. At the same time, in order to keep the overview, we need to have 
those views within the A3. We have expanded the A3 approach by introducing structure 
and guidelines to its presentation, in order to effectively display the architectural 
knowledge. As shown in Figure 4, unlike the A3 reports, we provide structure and use 
both sides of the A3 to create the architecture overview. One side displays the model 
view of the system aspect, while the other displays the textual view to support and 
complement the model view. In this way we close the ‘gap’ between a model 
description and a text description of the system, by using both in combination. This may 
seem as a lot of information for a single sheet of paper. In practice, the A3 Architecture 
Overview contains only the essentials, and it may serve as a baseline for a more 
comprehensive description with more detailed information. The amount of paper -if 
printed- is the same, so it does not overload the reader -reader can’t read both sides at 
the same time-. 

Structure and Elements of an A3 Architecture Overview 
Providing structure to the A3 improves readability and comprehension. Common 
elements in the A3 help the reader identify at a glance whether or not the architecture 
overview of a system aspect is of any interest, and quickly locate where the specific 
information is.  
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Figure 5 A3 Text Summary Structure and Elements  
(image not readable due to confidentiality reasons) 

As shown in Figure 5, the A3 text summary has the following elements5

• Definitions / abbreviations: Definitions of concepts used within the A3 
Architecture Overview as well as the list of abbreviations. 

: 

                                                 
5 Visual models and pictures are, as they say, worth a thousand word each, thus, as the room to display 
information is limited, it is encouraged to use them also in the text summary. 



• Introduction: Description of the context of the topic under discussion. 

• System Partition: For each system aspect an appropriate system partition is 
created -which may also be used also by other A3s discussing topics related with 
this system aspect-. Here the partitioning is described and the notation used (e.g. 
the color coding). The system partition consists on a functional and physical 
view of the system. 

• Functional6

• Physical View: Textual information to support the physical view in the model 
view. 

 View: Textual information to support the functional view in the 
model view. 

• System Concerns: The top level concerns related with the system aspect are 
captured in a model and presented here. A 4-column model; technology, 
functional, business and customer concerns is used. They are collected at the 
beginning of the creation process and used later for the key parameters and 
requirements elicitation. When used in combination with other A3s describing 
related system aspects, it supports the creation of budgets. 

• Key Parameters & Requirements: The topic under study contributes to 
specific system concerns (e.g. requirements are imposed on the system 
concerns). Related requirements and key parameters values (e.g. performance, 
size) are captured here.  

• Ownership7

• Design Strategies / Assumptions / Known issues: The specific strategies 
applied to deal with the issue at hand are described here, as well as the 
assumptions used (e.g. power is not lost in heat dissipation) and known issues 
(e.g. network may overload if broadcast not used). 

: The person in charge of maintaining this architecture overview is 
provided (and the contact details), as well as the version of this overview, the 
status (draft, reviewed, approved), reviewers, commentators, document ID, etc. 

• Roadmap: Current, past and (possible) future instantiations that apply, and the 
reasons for change. 

• References: Sources to broaden the knowledge are provided; experts (and their 
contact details), documents (and their identification numbers), relation with 
other system aspects, relation with other A3s, and the hierarchy of this A3. 

It should be noticed that the box size in Figure 5 is variable. This means that if more 
room is needed for one element it can be expanded. However as the A3 limitation is 
imposed to maintain the overview, this implies that there will be less room for other 
elements. Elements in the A3 are distributed in columns, from left to right. The order of 
this elements is structured according to the user needs; from little detail to more detail. 

                                                 
6 The term ‘Function’ can be interpreted in many ways. We have used this term in the sense “a specific 
or discrete action that it is necessary to achieve a given objective” (Blanchard and Frabryky 1998) 
7  For maintainbility reasons, all A3s are not created by one single person. One person should be 
responsible of collecting all A3s and establish the links among them, as well as their hierarchy. However 
the creation of individual A3s and their update should be the responsibility of individuals related to an A3 
topic. 
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Figure 6 A3 Model Overview Structure and Elements  

(image not readable due to confidentiality reasons) 
As shown in Figure 6, the A3 model overview has the following elements: 

• Functional view: The set of basic steps required to perform the action related to 
the topic under study. Boxes represent functions and the text within is in the 
form verb+noun. It should be noticed that this functional view (or functional 
flow) is an extension of the system partition chosen for this system aspect.  

• Visual aid: As functions are sometimes confusing or ambiguous, and in order to 
come closer to the mental model of the reader, pictures or visual representations 
are used to describe the function and its context. 

• Physical view: Typically a block diagram consisting of physical elements 
(software in this sense is a ‘physical’ element) and their interfaces. This view is 
also an extension of the system partition. 

• Quantification of key parameters: Numbers are needed to support the other 
views. Some key parameters need further decomposition, that can be related to 
the views. Measurements, experts estimations and best guesses -if nothing more 
is available- are included (with different colors). 

• Design constraints / choices: No system is ideal. There are usually some 
constraints imposed in the design (e.g. technology, functional, business, 
customer) that should be taken into account are mentioned here.  

• Legend: Describes the notation used in this A3. Color coding, shading, shapes 
and other element used to help the reader visualize the information are described 
here. 

As represented by the red arrows in the Figure 6, the views within the A3 are not 
isolated from one another. Links among the views (e.g. by using number links) enable 
to map one view to another. The predominant view on the A3 is the functional view. As 
functions are usually more stable over time than implementations, it is likely that this 
view will remain, even if the implementation changes. 



A3 Architecture Overviews as Repository of Architectural 
Knowledge 
The set of A3 architecture overviews forms a repository of  architectural knowledge. 
Each A3 architecture overview is an independent chunk of architectural knowledge that 
focus on a specific system aspect, yet to get an even broader picture, or to understand 
cross system concerns, more A3s can be used; A3s are linked to other A3s and arranged 
in hierarchy (described in the reference section of the A3 textual overview).   

 

a) Set of A3 architecture overviews b) Extended set of A3 architecture overviews 

Figure 7 A3 repository 
As shown in Figure 7, this repository of  architectural knowledge can be expanded and 
updated easily. New A3s can be created and added while those that need to be updated 
can be modified without having to modify the rest. 

Application: Philips MRI New Style SDS 
A System Design Specification (SDS) is used by companies in the development process 
to consolidate design specifications, to support ‘development memory’ and for 
educational purposes. It is usually the main description of the system’s design. It is 
meant to specify how requirements are met. It serves to consolidate the partitioning of 
the system into design entities; mapping of requirements onto system elements and 
define interfaces between them, budget between components when they need to 
cooperate, description of the behaviour, etc. They vary in structure from company to 
company, but they all have one thing in common; they are large text documents with 
few drawings in them. 

SDS acceptance and use within Philips MRI 
Consolidating the design of a complex system such as an MRI is difficult, therefore it 
requires a large SDS document. Despite the great effort required to update and maintain 
the SDS document for different system releases, it was found from the survey that it was 
seldom used. Architects, designers and engineers are the expected users of the SDS, 
however while architects were familiar with the SDS, designers and engineers were not. 
Surprisingly, while architects have their way to find the information they need without 
relying on the SDS, for designers and engineers is very difficult to obtain the system 
information they need for their work, and the SDS is of little support for them. The main 



users of the SDS were found to be managers, which see the SDS as the main source to 
gain insight on the system.  
Regarding whether the SDS provided enough architectural knowledge outside the user’s 
domain of expertise, the majority thought it did not. The lack of architectural knowledge 
was identified in the survey as the root cause of many problems and poor decisions. 
Communication across disciplines and departments as well as MRI system complexity 
was perceived as the main problem for most employees when dealing with new 
developments.  The SDS was found of little use in this sense. The SDS was too detailed 
for most users but domain experts, leading to communication barriers. SDS was found 
useful for new employees as a means to learn about the system. 

Having a system overview was considered very important to support development by all 
disciplines, however only half of the people thought the SDS provided the system 
overview they needed. Managers do obtain the overview they need from the SDS, 
however it did not provide overview to architects, and little overview to designers and 
engineers. It was concluded from the survey that a change in the syle was desired. 
While half of the manages and all domain experts preferred to continue with a text-
based document, almost all architects, designers, and many engineers preferred a model-
based description for the SDS.  

New Style: A3 Architecture Overview SDS 
From all mentioned above, it was decided that the A3 Architecture Overview style 
would be introduced as a way to describe the system and become the new SDS style. A 
‘proof of concept SDS’ was developed to assess the benefits and concerns of the new 
style. After an initial discussion with main MRI system architects, 16 system aspects 
were considered essential for the MRI system description. It was estimated that each of 
those system aspects may need between one and five A3s once divided into topics. 
Then, a initial amount of 40-60 A3 architecture overviews were estimated to describe 
every relevant system aspect of the MRI system. This may look as a lot of work 
(previous SDS document was 200 pages long), however it should be noticed that A3s 
describing a system aspect are created by different individuals or teams. 

Two topics were selected for the SDS concept; scan control and MRI calibrations. 
These system aspects were chosen as they were complex aspects that crossed system 
and organizational boundaries, resulting in interesting study cases. Scan control is in 
charge of controlling the different subsystems in a timely and synchronized fashion. 
MRI systems need to have precise timing and be synchronized to the nanosecond, 
requiring complex solutions. Three A3 architecture overviews; Generation of control 
data, distribution of control data and store and dispatch of control data were created. 
MRI calibrations is in charge of correcting imperfections and tune different parameters 
for optimal image quality. Two A3 architecture overviews were created for two of the 
main MRI calibrations; Resonance frequency calibration and eddy current calibration.  
Although they may seem independent system aspects, a change in an MRI calibration 
parameter has an impact on the generation of control data, resulting in links among A3s.  

After the proof of concept SDS was created, accepted and validated, a workshop with 
system architects and experts was organized to complete the SDS. A short training in 
the creation of A3 was given and there was some coaching by the main author. An 
owner for each system aspect was assigned, and the task to create the A3 and maintain it 
was given. To support the creation of those A3 architecture overviews after the 
workshop, a cookbook was provided. The cookbook (and A3 itself) described the 



process and provided guidelines to the creation process. The SDS owner is now in 
charge of collecting the A3s and maintain the relations among them.  

Benefits and Concerns of the New Style 
Although the complete SDS is not yet finished by the time of publication of this article, 
the A3s developed for the SDS concept were used at some projects. It was stated by 
users that one of the main values of the A3 architecture overviews is that they enable to 
get more insight on the system. This in itself has a great value during the development 
process, “one insight is worth a thousand analysis” (Charles W. Sooter, 1993).  

For project meetings, A3 architecture overviews were populated among the members. 
The first reaction of those not used to the A3 layout was to complain about the new 
format (hard to fit in the screen, problems with the printers, etc). However in later 
meetings we found out that all had read and studied the A3 provided (maybe out of 
curiosity), while they didn’t read the equivalent text document that was also provided. 
This situation happened several times, leading us to the conclusion that the A3 is the 
maximum amount of information employees are willing to read to prepare for a meeting 
or discussion.  

In addition, people attended meetings with plenty of annotations in the A3, triggering 
discussions and improving the A3 contents, proving that it is a good tool for rich 
discussions. The model view helped discussions while the text part helped broaden the 
information on individual use. People of different backgrounds were able to use them 
without much explanation. Unlike the equivalent views provided in SysML formats, 
content discussions in the A3 format started right away. 

From the management point of view, it become clear that this new style improved 
maintainbility and upgradeability of the design specification. New A3s could be added 
without having to touch the ones already created, and future SDS could reuse much of 
existing A3s. 

Conclusions 
A company’s ability to cope with system evolution is influenced by its understanding of 
the impact that a change has on the overall design and implementation. Companies 
already have a large amount of knowledge about the domain, yet few companies know 
how to capture knowledge effectively and how to reuse that knowledge.  

A challenge to cope with system evolution is how to effectively capture architectural 
knowledge, and how to share it in a fashion that can provide guidance to architect new 
system generations. By understanding and assessing the consequences of changes, 
design effort can be directed towards avoiding undesired impacts and guiding the design 
of the system to the one that enables easy evolution.  

From a survey performed at Philips MRI, it was found that main evolution barriers 
when dealing with new developments were; dealing with complexity, communication 
across disciplines and departments, knowledge sharing, and finding the necessary 
system information. Those barriers were identified as the root cause of many 
development problems and bad decisions. 

Architecture descriptions aim to ease evolution barriers. Having a well documented 
architecture poses many benefits to the company. However, the main architecture 
knowledge resides in the expert's minds, and only part of that knowledge is 



documented. This means that the system architecture representation has to be, largely at 
least, reconstructed.  

Reverse architecting enables recovering the architectural knowledge. It is an iterative 
process which consists of three phases; information extraction, abstraction and 
presentation. This process leads to the creation of A3 architecture overviews. 

An A3 Architecture Overview is an architecture representation that provides a 
manageable view of a system aspect. It displays the architectural knowledge related to 
that system aspect in both sides of an A3 sheet; one side with a  textual view and the 
other with a model view. Views are structured and provide common elements to 
enhance readability and comprehension. 

The A3 method has successfully been applied as a new style of the Philips MRI system 
design specification. Architectural knowledge of different system aspects were captured 
using this method. The results prove that the A3 architecture overview, is an effective 
tool for communication among diverse disciplines and departments, and enables gaining 
deeper insight into a system. 
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